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We have studied the ordering kinetics of a two-dimensional anisotropic Swift-Hohenberg �SH� model nu-
merically. The defect structure for this model is simpler than for the isotropic SH model. One finds only
dislocations in the aligned ordering striped system. The motion of these point defects is strongly influenced by
the anisotropic nature of the system. We developed accurate numerical methods for following the trajectories
of dislocations. This allows us to carry out a detailed statistical analysis of the dynamics of the dislocations.
The average speeds for the motion of the dislocations in the two orthogonal directions obey power laws in time
with different amplitudes but the same exponents. The position and velocity distribution functions are only
weakly anisotropic.
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I. INTRODUCTION

There is ongoing interest in the growth kinetics of stripe-
forming systems. There has been progress via experimental
�1,2� and numerical �3,4� studies of growth after a quench
from an isotropic initial state. However, the theoretical un-
derstanding of such systems remains limited. This is mostly
due to the complexity of the defect structures generated dur-
ing ordering in such systems. For example, in the Swift-
Hohenberg model, there are grain boundaries, disclinations,
and dislocations generated in the ordering process. The co-
existence of all these different defect structures has hindered
the theoretical analysis of the striped phase-ordering sys-
tems. In this paper, we study an anisotropic Swift-Hohenberg
�SH� model, where only dislocations are produced in the
ordering process. Our goal is to understand the statistical
properties of these defects much as we now understand those
properties for simple vortex-producing models.

There are formal arguments �5� that if we break the sym-
metry of the isotropic SH model by applying, for example an
electric field, then the system can be mapped onto an isotro-
pic time-dependent Ginzburg-Landau �TDGL� model. This
suggests a L� t1/2 growth law compared to much slower
growth in the isotropic SH model. We find support for this
hypothesis.

Some previous studies have focused on the evolution of a
few dislocations �6–12�. Tesauro and Cross �6� studied the
steady-state climbing motion �move along the direction of
stripes� of isolated dislocations both theoretically and nu-
merically in several two-dimensional model systems includ-
ing the SH model. They found that the wave number selected
by the dislocation climb is marginally stable only for poten-
tial models. Bodenschatz et al. �11� studied the climbing mo-
tion of dislocations with amplitude equations appropriate for
systems with an axial anisotropy. The Peach-Kohler �PK�
force �the effective wave-number mismatch� drives the dis-
location motion, just as in Ref. �6�. They also consider the
interaction between two dislocations together with the PK
force. Goren et al. �7–9� studied the convection in a thin
layer of a nematic material experimentally. They introduced
a gauge-field theoretical treatment to study the climbing of
dislocations in a stressed background field where the PK

force plays a role. The theory �12� predicts that climbing and
gliding motions of a single dislocation are equivalent �after
the proper scaling for the anisotropic system� and due to the
PK mechanism. Braun and Steinberg �10� studied the same
experimental system. They measured the gliding motion of
dislocations due to a pure interaction between the members
of the pair without the PK mechanism. They found that the
climb and gliding motion have different characters.

Boyer �13� simulated an anisotropic stripe-forming model
�14� based on the Swift-Hohenberg model. His model is
more complicated than ours. In his model the stripes have
two preferred directions and a zigzag pattern is formed, and
the dislocations tend to stay together to form large domain
walls. The author found that for small quenches the energy,
the dislocation energy, and the characteristic length normal
to the stripes all scale as t±1/2 �� for the characteristic
length�. He also found that for deep quenches the system was
frozen. The pinning effect becomes important as the quench
depth increases. The zigzag pattern was experimentally real-
ized in Ref. �15�.

Here we study an ensemble of well-separated dislocations
in the context of domain growth. The motion of the disloca-
tions in this model is highly anisotropic. They tend to move
across the stripes. The average speeds across and along the
stripes obey simple power laws in time with different ampli-
tudes but approximately the same exponent. The distribu-
tions of the defect velocities along the two orthogonal direc-
tions have same form and large velocity power-law tails with
approximately the same exponents. Two bulk measurements
of the ordering—the decay of the effective energy and the
number of dislocations—obey a simple power law in time
with a logarithmic correction, as for the XY model �18�.

The two-dimensional isotropic SH model �19� is defined
by a Langevin equation

���x,t�
�t

= −
�H���
���x,t�

+ ��x,t� , �1�

where � is the ordering field and the effective Hamiltonian is
given by
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�

2
�2 +

1
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���2 + 1���2 +

1

4
�4� , �2�

where � is a positive constant. All the quantities in this paper
have been put in dimensionless form. The noise � satisfies
	��x , t���x� , t��
=2T��x−x����t− t��, where T is the tempera-
ture after the quench. In the following, we set T=0 which
eliminates the noise term from the analysis. Starting from a
random initial condition without long-distance correlations,
the SH equation �1� generates stripes with period 2�.

In the simulations for the isotropic SH model, we found
�4� that the grain boundaries’ motion dominates the ordering
dynamics of the system, which is different from what is seen
in some experiments �1,2�, where the disclination quadrapole
annihilation is the dominant ordering process. Disclinations
and dislocations are also present in the SH ordering system.
In more recent experiments �16� on different diblock copoly-
mer systems, defect configurations looking more like the SH
simulations �4� are found. The coexistence of different kinds
of disordering defects makes it difficult to analyze simula-
tions of the isotropic SH system. However, in an anisotropic
SH system, where only pointlike dislocations are present, the
system should be easier to study.

We make the SH system anisotropic by adding an addi-
tional term to the effective Hamiltonian

H��� → H��� +� d2r
�

2
� ��

�y
�2

, �3�

where � is a constant. The anisotropic term corresponds to
applying an external magnetic field. In this case the SH equa-
tion now takes the form

��

�t
= �� + ��2 + 1�2� − �3 + �

�2�

�y2 . �4�

We studied the case where �=0.1 and �=0.4. Stripes gener-
ated by the above equation align along the y direction on the
x-y plane. This configuration minimizes the anisotropic term
in Eq. �3�. We start from a random initial condition for �.
After a very short transient time, the only defects left in the
system are dislocations. Dislocation annihilation is the final
ordering process.

In Sec. II, we set up our numerical study. Then in Sec. III
we study the time decay of the system energy. The stripe
patterns and the motions of the dislocations are shown in
Sec. IV. And we analyze the quantitative measurements in
Sec. V. The speed distribution for the dislocations is shown
in Sec. VI.

II. NUMERICAL ALGORITHM

We employed the usual Euler method to drive the system:

��t + �t� = ��t� + �t����t� − �1 + �2�2��t� + ��y
2��t� − ��t�3� .

�5�

We take in this case time step �t=0.02 and lattice spacing
�r=� /4. In the following sections, the numerical measure-
ments are obtained from the system that is evolved by the
Euler method.

III. TIME DECAY OF THE AVERAGE ENERGY

The first quantity we look at is a gross statistical
measure of the ordering given by the average coarse-grained
energy E= 	H
t. In Fig. 1 we plot �E=E−E0, where E0 is
the ordered value of E �known to be accurately given by
E0=−�2S /6, where S is the surface area of the system�.
These simulations were averaged over 528 runs. In agree-
ment with the n=d=2 TDGL model �17,18� we find a power
law with a logarithmic correction characteristic of the anni-
hilation of point defects. This is clearly consistent with a
growth-law exponent of z�2. Although Fig. 1 does not give
a good estimate for the exponent z, we conclude that z=2 is
the best value by taking into account Fig. 6 discussed below.
Having established that the ordering is speeded up relative to
the isotropic SH model, where z�3, we can move on to look
at the nature of the ordering patterns grown using this model.

IV. DISLOCATIONS

In Fig. 2 we show a typical ordering configurations of the
anisotropic SH system at different times. Notice that the only
defects produced are dislocations.

We are interested in the path of each dislocation trajec-
tory. These paths must be determined accurately enough such
that we can compute dislocation speeds. In the case of the
O�2� TDGL model �17,18� we were able to accurately deter-
mine the position of a vortex by finding the zeros �minima�
in the order parameter amplitude. Here the situation is more
complicated. As explained in Ref. �4� the positions of defects
in the SH model are located by maxima in the quantity

A = 
	

��	
�2, �6�

where 
 is the angle that the director n̂=�� / ���� makes
with some arbitrary direction and 	 is the index for different
spatial directions. We showed numerically that if A�A0,
then that site on the lattice can be associated with a defect.
Here we need to determine the position of the dislocation
with some accuracy. We have found that the expression

FIG. 1. �E vs time t after the quench. The energy �E is pro-
portional to �t / log�t /18.5��−0.85. All averages are of 528 runs.
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FIG. 2. Typical configurations of an 512�512 anisotropic SH system at different times. From left to right and top to bottom, the system
was at t=2500, 5000, 7500, 10 000, 12 500, and 15 000.
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r̄	 =
i

r	
i Ai

i
Ai

�7�

gives the position of the dislocation in the 	th direction, and
the sum is over all contiguous sites where Ai�A0=3.0. Us-
ing these procedures we obtain, for example, the set of dis-
location trajectories shown in Fig. 3. The dislocations tend to
move �glide� across the stripes and annihilate with each
other. If we look more closely we see the oscillating behavior
in the glide motion as shown in Figs. 4 and 5. In Fig. 4 we
also show all the sites that are associated with the disloca-
tions. To obtain useful statistical data we will need to average
over the different runs for our system.

The oscillation in the glide motion of the dislocation is
due to Peierls-like pinning forces. The law of motion of a

dislocation due to the Peierls-like force takes the form �13�

−1v = −1dx

dt
= f − p cos�kx� .

Here v is the velocity across the stripes.  is the mobility. f
is the external force per unit length applied onto the disloca-
tion. In this context, f is caused by other dislocations, espe-
cially the one that is going to annihilate with the dislocation
of interest. p is the magnitude of the pinning force. The
Peierls-like pinning force term oscillates with a period of
2� /k, which is exactly the stripe pattern period. We are in-
terested in the interaction f between dislocations. In the next
section, we will compute the average v versus the separation
distance between two annihilating dislocations.

We plot the average number of dislocations, Nd, as a func-
tion of time in Fig. 6. Clearly it is fit by a power law with a
logarithmic correction just as for �E and the isotropic TDGL
result for n=d=2 �17,18�. Nd and �E share approximately
the same time dependence with growth-law exponent z�2.

FIG. 3. The trajectories of the dislocations in a 512�512 an-
isotropic SH system. The dots are the positions where two disloca-
tions annihilate. The stripes are along the y direction as shown in
Fig. 2. Most of the dislocations glide across the stripes.

FIG. 4. The trajectories of two annihilating dislocations. The
solid line denotes the center of the dislocation core determined by
Eq. �7�. The dots indicate the sites i which are part of the core used
in Eq. �7�. Thus this figure shows the motion of the dislocation core.

FIG. 5. The position of a dislocation along the stripes versus the
time after the quench. We use a tenth-degree polynomial to fit the
data and average out the oscillations along the y direction.

FIG. 6. The number of dislocations, Nd, for the anisotropic SH
model as a function of time averaged over 528 runs is given by the
solid line. There is an excellent fit to the form �t / log�t /a��−b with
a=32.1 and b=0.94.
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The energy per dislocation is almost a constant, which means
the dislocations control the dynamics of the system.

V. ANALYSIS

To quantify the extent of cross stripe migration of dislo-
cations, we measured the average distance r	 in the climb
and glide directions between two dislocations which are go-
ing to annihilate with each other at time t0. In Fig. 7, we
show r	 vs t− t0, where t is the time we measure the distance.
We measured the components of average distance across and
along the stripes. In Fig. 7, we can see that at any t− t0 the
separation of two annihilating dislocations across the stripes
is much larger than the distance along the stripes. This means
the two dislocations tend to approach each other along the
direction across the stripes. We notice that the average sepa-
ration takes a power-law form for the glide motion. The
climbing motion as one approaches annihilation is more
complicated.

If we plot the average separation of defects heading to-
ward annihilations versus time after quench we obtain the
result shown in Fig. 8. Unlike in the NCOP TDGL case r̄
deviates from a power-law behavior for long times and
does not serve as a good measure of the growth law for the
system.

In Ref. �17� we found good scaling results and a reason-
able theoretical model for describing the numerical results
because there was a simple scaling relation between the av-
erage separation r of two annihilating defects and their rela-
tive speed u, u�r−b. The situation is more complicated here.
In Fig. 9 we plot the average relative speed in a given direc-
tion versus separation in that direction. As the dislocations
approach each other, their speeds increase. And when the
distance between them is too small, our measurement is un-
able to follow the motions of the dislocations. So the data
points in Fig. 9 with distances smaller than r=16 are not
reliable and should not be taken into account in the following
analysis.

Using only the reliable data in Fig. 9 we obtain

u	 = A	r	
−b, �8�

where b=0.75 for both climb and glide and Ag=0.58 and
Ac=0.06. The assumption ū	= ū	�r	� is only approximately
correct. In fact ū	 depends on both x-separation and
y-separation distances, as is shown in Fig. 10�a�. Corre-
spondingly, there is a strong correlation as shown in Fig.
10�b� between the glide separation dg and the separation dis-
tance d. The climb distance is correlated with d for small
enough separations.

If we plot the average relative speed versus time to anni-
hilation, Fig. 11, we obtain the approximate power-law result

ū	�t� � �t0 − t�−1/z, �9�

which is consistent with z=2 in both directions.

FIG. 7. The average distance between two dislocations which
are going to annihilate with each other versus time before the anni-
hilation. The components across �glide� and along �climb� the
stripes are measured, respectively.

FIG. 8. The average distance between two dislocations which
are going to annihilate versus the time after the quench. The com-
ponents across �glide� and along �climb� the stripes are measured
respectively.

FIG. 9. The average relative speed between two dislocations
which are going to annihilate versus the separation between them in
that direction. The best fit for each set of the glide data is given by
u�r	�=A	r	

−b with b	=0.75 approximately for both glide and climb.
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VI. PROBABILITY DISTRIBUTIONS

We can next turn to the associated probability distribu-
tions. The first is the separation probability distribution. This
is the probability Pr

	�t� that at time t two annihilating dislo-
cations are separated by a distance r	, where 	 corresponds
to climb or glide. We assume that Pr

	�t� takes a scaling form
if we plot it versus r	 / r̄	�t� as shown in Fig. 12, where the
average r̄	 is shown in Fig. 8. We obtain a reasonable scaling
form but unlike in Ref. �17� we do not find an algebraic large
separation tail. Instead the scaling function appears to decay
exponentially. Notice that the scaling forms are roughly in-
dependent of direction. We fit the separation distribution
function with y=a0xb / �1+a1x1+b�c, where a0, a1, b, and c are
parameters. This function is the most general form for the
separation distribution obtained from �17�. Since the fitting
function has a power-law decay tail, which is different from
the exponential decay of the real data, we are unable to fit the
large separation tail. When we fit the data, we restrict the
value of c to be between 1 and 5. The resulting value of c is
4.9. If we extend the upper limit on c, the best fit for c
increases. However, we found that b is always close to 0.7
whatever the upper limit of c.

We turn next to the statistics governing the relative
speeds. The average speeds are shown in Fig. 13�a� to be

given approximately by t−1/2 for both directions in agreement
with the scaling ideas. If we fit the climb trajectories in a
way that averages over the oscillations in the climb compo-
nent, we obtain the average climb speed which is in better
agreement with the t−1/2 result, as is shown in Fig. 13�b�.

Finally we plot the speed distribution function in Fig.
14�a�. Clearly we have a large speed power-law tail. We find
roughly that both glide and climb motions have a v−3 large
speed power-law tail as shown in Fig. 14�b� after we average
out the oscillations on the y component �along the stripes�.
The distribution functions are sensitive to how we treat the
oscillations in the climb data. This may account for the
higher tail exponent 3.9 shown in Fig. 14�a� for the climb
data. We also use a quite general form for the speed distri-
bution function obtained from Ref. �17� to fit the data. The
function is y�x�=a0x−2+�c�b+1�−1�/b / �1+a1x�b+1�/b�c. We require
that y�0� to be nonzero. So we must have −2+ �c�b+1�
−1� /b=0. The parameter b is the same b in Fig. 9, with a
value 0.8. So we have c= �1+2b� / �1+b�=1.44. So we fix the

FIG. 11. The average relative speed between two dislocations
which are going to annihilate versus the time before the annihilation
in the glide and climb directions.

FIG. 12. The separation probability distribution. The tail of the
distribution has an exponential form, as is shown in the inset. We fit
the separation distribution function with y=a0xb / �1+a1x1+b�c,
where a0, a1, b, and c are parameters whose values are given in the
figure.

FIG. 10. �a� The speed ux and uy depend on both x and y. �b� d
is the distance between two annihilating dislocations. dg is the sepa-
ration distance across the stripes �glide motion�. dc is the separation
distance along the stripes �climb motion�. And d2=dc

2+dg
2.
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values of c=1.44 and b=0.8 in the curve fitting.
Again the scaling forms in the two directions are, to

within our accuracy, equivalent.

VII. CONCLUSION

The kinetics of the anisotropic SH model are conceptually
simpler than for the isotropic SH case since there is only one
disordering defect. In the simplest picture one has a set of
point defects ordering in a fashion similar to a collection of
vortices in an XY model �18� but with anisotropic scaling.
One has a scaling length L	�t��A	tx and power-law behav-
iors for the decreasing energy, number of defects, and aver-
age defect velocity with x�0.5.

The picture of annihilating point defects with a growth
law of t1/2 is roughly true for our anisotropic system, and in
this sense the system is similar to the two-dimensional XY
model with the annihilation of vortices. Both have bulk prop-
erties �E and Nd which have the same ordering time depen-
dence. Both systems have large velocity power-law tails
which show v−3 behavior. One simple result is that the scal-

ing functions P�r� and P�v� are nearly isotropic as shown in
Figs. 12 and 14. This is true despite the fact that the motion
is highly anisotropic. It appears that the annihilating defects
organize themselves in such a way that their relative velocity
is radial. Once this is true, it is not important what the angle
is between the relative velocity and the stripes. As one looks
closer the analogy breaks down. The separation probability
distribution shows a clear power-law tail in the XY model but
not in the anisotropic model. The average distance between
annihilation defects in the XY model serves as a good mea-
sure of the growth law r̄� t1/2. This is not true in the aniso-
tropic model where r̄� t0.17. One interpretation of our results
is that the hypothesis of independent pairs of dislocations
breaks down at a much greater distance than for the XY
model. It is also possible that the independent pair mecha-
nism used in Ref. �17� works less well in this system. There
may be correlations among different pairs of dislocations. In
any event, our results cannot be simply explained by a res-
caling of the glide and climb directions.

ACKNOWLEDGMENT

This work is supported by the Material Science and En-
gineering Center through Grant No. NSF DMR-9808595.

FIG. 13. �a� The averages of the speeds, the transverse compo-
nent �across the stripes�, and the longitudinal component �along the
stripes�. They all obey simple power laws v̄	� tx	. In �b�, we use a
tenth-degree polynomial to fit the trajectories of climb motion and
average out the oscillations on climb motion. The obtained power-
law exponent is closer to 0.5 in this case.

FIG. 14. The distribution of the defects’ speed for glide and
climb directions. After scaling the data at different times �from 300
to 8000�, we collapse all the speed data to one curve. The motions
of gliding and climbing are measured separately. In �b�, the oscil-
lations of the climbing motion along the stripe are averaged out. We
also use a tenth-degree polynomial fit to smooth the glide motion.
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